Supplementation with trivalent chromium alters glucose and NEFA metabolism in the transition dairy cow and increases dry matter (DM) intake.

Figure 1

- Increased glucose output from liver
- Increased DM intake
- Decreased NEFA
- Cows reach positive energy balance sooner
- Improved reproduction

Cr+3

- **Increased nutrient availability to mammary**
 - Increased milk synthesis

The chicken and the egg: DMI and milk yield

With recombinant bovine somatotropin (rBST) treatment in lactating dairy cattle, it is well known that increases in milk yield precede the increases in dry matter intake (DMI). With trivalent chromium supplementation, it is not clear which comes first, DMI or milk yield, largely due to the fact that most of the studies reported start supplementation in late gestation. Of the seven experiments in the scientific literature where trivalent chromium supplementation during the transition period, two observed significantly increased DMI during the pre-partum period, while the other five observed no difference compared to the unsupplemented cows. Lack of significant differences in pre-partum DMI in response to chromium supplementation in the studies above does not necessarily rule out that increases in DMI occurred; lack of significance could be due to the high variation in DMI within and between individual cows during this period and the lack of adequate animals (experimental units) to detect treatment differences.

Out of nine experiments, six had significantly increased DMI post-partum in the chromium-supplemented cows and the other three had nonsignificant differences compared to the unsupplemented cows. The unweighted average across the nine experiments is 2.7 pounds per day DMI, with a range from less than 1.1 pounds to more than 7.5 pounds per day. Milk yield responses paralleled the DMI response, with the studies that observed significant increases in DMI also having significant increases in daily milk production. On average (unweighted), there was a 3.9-pounds-per-day increase in milk yield, ranging from less
the improvement in reproduction reflects a carryover effect into lactation and the breeding period. In another study, trivalent chromium was supplemented through 84 DIM, which is likely to have overlapped with the beginning of breeding. The length of the voluntary waiting period was not reported in this study.

Lower incidence of infectious and metabolic diseases in the transition period is also correlated with better reproduction. With the alterations in glucose and NEFA metabolism that occur with trivalent chromium supplementation and improved DMI observed, incidences of ketosis, fatty liver and displaced abomasums would be expected to decrease as well. The studies summarized here for DMI and milk yield showed mixed results for incidences of metabolic and infectious (metritis and mastitis) diseases. It is likely that research trials with larger numbers of animals would be needed to investigate the impact of chromium supplementation on the epidemiology of periparturient diseases. Trivalent chromium supplementation may have positive impacts on immunity through reducing cortisol levels and improving immune responses. This has important implications in livestock nutrition during stress, as well as the periparturient transition period in sows and dairy cows. If overall immunity and peror responses to specific immune challenges such as metritis and mastitis are improved in the transition period with trivalent chromium supplementation, then this would also be expected to lead to reduced incidences of infectious diseases and better reproduction in dairy cattle.

Determining whether chromium supplementation is needed

The chromium status of animals is difficult to evaluate. Serum and tissue levels are not good indicators as chromium turns over quickly, and urinary clearance rates are increased by stress. The best test to evaluate chromium status of individual animals appears to be the glucose challenge or glucose tolerance test. However, this test is not feasible in a commercial dairy herd setting. Determining chromium status and intake is further complicated by the difficulty of obtaining feed samples without contamination from other sources of chromium or laboratories having sensitive enough equipment. Little data is available on chromium levels in common feedstuffs, and whether it is an inorganic or organic form. At the herd level, circulating NEFA levels in the first few weeks post-calving, DMI and milk yield (daily and peak) would be the best variables to evaluate whether chromium supplementation is beneficial to transition dairy cows.

Trivalent chromium is a dietary required nutrient in humans and laboratory rodents. However, due to limited research available, the NRC has not established a dietary requirement in swine or cattle, including dairy.

In 2009, the U.S. Food and Drug Administration (FDA), Center for Veterinary Medicine (CVM) issued a regulatory discretion letter that permits the use of chromium propionate as a source of chromium in cattle diets, up to 0.5 mg Cr per kilograms (500 ppb) in the complete diet.

Risk-to-benefit perspective

Based on the literature reviewed, supplementing transition dairy cows with chromium propionate would be expected to increase milk yields and income over feed costs more than 75 percent of the time. At April 2010 feed and milk prices, an increase of 2 pounds milk per head per day with an associated 0.7 pound per head per day increase in DMI in response to supplementation with chromium propionate would expect to net $720 per 100 cows per month in IOFC (income over feed costs, not including the chromium). The cost to supplement chromium propionate during the close-up period and the first month post-calving to 100 cows would be less than $500.

However, the largest economic benefit to trivalent chromium supplementation may be realized through reduced incidence of periparturient diseases and improved reproduction in the dairy herd. With the caveat that the data available in the current scientific literature is not adequate to estimate the probabilities of success or failure for these responses to chromium supplementation, we can only speculate at what the economic benefits would be. At costs of $200 to $400 per case for the various metabolic diseases, a reduction of one to two cases per 100 cows would justify the cost of supplementing chromium propionate during the periparturient period. If improvements in herd reproduction occur with chromium supplementation, this would also increase the return. With new pregnancies having a value of $278, a reduction of involuntary culling due to not being bred by 2 percent would make chromium supplementation worthwhile. Improved reproduction would also be reflected in reduced days open. At a conservative cost of $2 per cow per day open, reducing days open by three days in a group of 100 cows would be worth $600. Note that these two approaches to valuing improvements in herd reproduction are not additive; both account for cull value, replacement costs and persistency in milk yield. In contrast to these potential benefits, the cost of failure (no response to supplementation) is the cost of feeding chromium propionate to 100 cows.

References omitted due to space but are available upon request.

Reprinted from July 1, 2010